A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges.
نویسندگان
چکیده
We combine the finite-difference time-domain method with pulse response techniques in order to calculate the light scattering properties of biological cells over a range of wavelengths simultaneously. The method we describe can be used to compute the scattering patterns of cells containing multiple heterogeneous organelles, providing greater geometric flexibility than Mie theory solutions. Using a desktop computer, we calculate the scattering patterns for common homogeneous models of biological cells and also for more complex representations of cellular morphology. We find that the geometry chosen significantly impacts scattering properties, emphasizing the need for careful consideration of appropriate theoretical models of cellular scattering and for accurate microscopic determination of optical properties.
منابع مشابه
Scattered-Field FDTD and PSTD Algorithms with CPML Absorbing Boundary Conditions for Light Scattering by Aerosols
As fundamental parameters for polarized-radiative-transfer calculations, the single-scattering phase matrix of irregularly shaped aerosol particles must be accurately modeled. In this study, a scattered-field finite-difference time-domain (FDTD) model and a scattered-field pseudospectral time-domain (PSTD) model are developed for light scattering by arbitrarily shaped dielectric aerosols. The c...
متن کاملSimulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method.
Numerical simulations of light scattering by a biconcave shaped human red blood cell (RBC) are carried out using the finite-difference time-domain (FDTD) method. A previously developed FDTD code for the study of light scattering by ice crystals is modified for the current purpose and it is validated against Mie theory using a spherically shaped RBC. Numerical results for the angular distributio...
متن کاملFinite-difference time-domain simulation of light scattering from single cells.
The finite-difference time-domain (FDTD) technique is used to compute light scattering from biological cells in two dimensions. Results are presented for the computed scattering patterns of cells containing multiple organelles. This method provides considerably more flexibility than Mie theory because of its ability to model inhomogeneous objects such as cells. © 1997 Society of Photo-Optical I...
متن کاملFinite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures
Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...
متن کاملApplicability of the Finite-Difference Time-Domain Method to Photonic Crystal Structures
Several illustrations are given of the applicability of the Finite-Difference Time-Domain (FDTD) method to photonic crystal structures. An intuitive method for calculating the band gap of a two-dimensional photonic crystal is demonstrated. For waveguides in such a crystal, the dispersion and the coupling efficiency to a conventional dielectric waveguide are determined. The time-evolution of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 6 7 شماره
صفحات -
تاریخ انتشار 2000